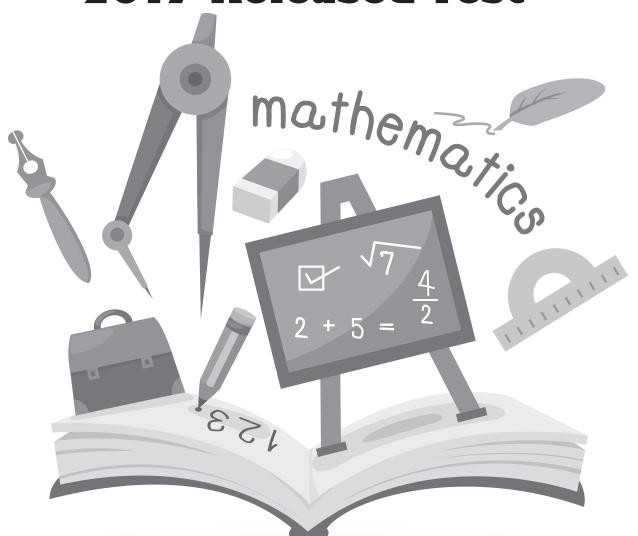

Step Up to the TEKS by GF Educators, Inc.

Algebra I 2017 Released Items Analysis

Copyright © 2017

Edition I


www.StepUpTEKS.com

Released Items

Name: _	 	
Teacher:	 	
Dator		

Step Up to the TEKS by GF Educators, Inc.

Instructional Analysis 2017 Released Test

Category 1 Algebra I

TEKS A.10A Supporting Standard

add and subtract polynomials of degree one and degree two

ITEM

A shoe company is going to close one of its two stores and combine all the inventory from both stores. These polynomials represent the inventory in each store:

Store A:
$$\frac{1}{2}g^2 + \frac{7}{2}$$

Store B:
$$3g^2 - \frac{4}{5}g + \frac{1}{4}$$

Which expression represents the combined inventory of the two stores?

A
$$\frac{7}{2}g^2 - \frac{4}{5}g + \frac{15}{4}$$

B
$$\frac{7}{2}q^2 - \frac{4}{5}g + \frac{4}{3}$$

C
$$\frac{7}{2}g^2 - \frac{4}{5}g + \frac{15}{4}$$

D
$$\frac{7}{2}g^2 - \frac{4}{5}g + \frac{4}{3}$$

Item Analysis		
Verb	Add	
Using or Including	NA	
Concept	Polynomials Degree Two	
Process TEKS	A.1B, A.1F	
Notes		

TEKS A.10E Readiness Standard

factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including perfect square trinomials of degree two

ITEM

17 Which expression is equivalent to $6x^2 + 13x + 5$?

A
$$(2x + 5)(3x 1)$$

B
$$(2x-5)(3x+1)$$

C
$$(2x + 1)(3x + 5)$$

D
$$(2x-1)(3x-5)$$

Item Analysis		
Verb	Factor	
Using or Including	Trinomials Degree Two	
Concept	Real Factors	
Process TEKS	A.1B, A.1F	
	Notos	

Algebra I

TEKS A.10E Readiness Standard

factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including perfect square trinomials of degree two

ITEM

28 Which expression is equivalent to $m^2 - 13m - 30$?

E /	(m ·	_ 1	51/	m	_	21
Г (III	- т	コル	Ш	+	Z)

G
$$(m-10)(m-3)$$

H
$$(m + 15)(m - 2)$$

J
$$(m+10)(m+3)$$

Item Analysis			
Verb	Factor		
Using or Including	Trinomials Degree Two		
Concept	Real Factors		
Process TEKS	A.1B, A.1F		
Notes			

Notes

TEKS A.10E Readiness Standard

factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including perfect square trinomials of degree two

ITEM

41 Which expression is a factor of $18x^2 - 15x + 2$?

\mathbf{A} $Jx - 2$	Α	3 <i>x</i>	_	2
-----------------------	---	------------	---	---

B
$$9x - 1$$

C
$$x - 2$$

D
$$2x - 1$$

Item Analysis			
Verb	Factor		
Using or Including	Trinomials Degree Two		
Concept	Real Factors		
Process TEKS	A.1B, A.1F		
Notes			

Category 1 Algebra I

TEKS A.11A Supporting Standard simplify numerical radical expressions involving square roots

ITEM

Item Analysis

- 1 Which expression is equivalent to $\sqrt{147}$?
 - 3√7
 - В 7√3
 - 21√7
 - 49√3

Item Analysis		
Verb	Simplify	
Using or Including	Square Roots	
Concept	Numerical Radical Expressions	
Process TEKS	A.1B, A.1F	
	Notes	

TEKS A.11B Readiness Standard

simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents

ITEM

- The area of a rectangle is $54x^9y^8$ square yards. If the length of the rectangle is $6x^3y^4$ which expression represents the width of the rectangle in yards?
 - $9x^3y^2$
 - $48x^6y^4$ G
 - $9x^{6}y^{4}$ Н
 - $60x^{12}y^{12}$

Item Analysis		
Verb	Simplify	
Using or Including	Integral Exponents	
Concept	Algebraic Expressions	
Process TEKS	A.1A, A.1B, A.1F	
	Notes	

Algebra I

TEKS A.11B Readiness Standard

simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents

ITEM

The expression $(x^3)(x^{-17})$ is equivalent to x^n . What is the value of n?

Record your answer and fill in the bubbles on your answer document.

Item Analysis		
Verb	Simplify	
Using or Including	Integral Exponents	
Concept	Algebraic Expressions	
Process TEKS	A.1B, A.1F	
Notes		

TEKS A.11B Readiness Standard

simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents

ITEM

51 Which expression is equivalent to $(7x^3)^2(x^8)^{1/2}$

- **A** $14x^{10}$
- **B** $49x^{10}$
- **C** $14x^7$
- **D** $49x^7$

Item Analysis		
Verb	Simplify	
Using or Including	Rational Exponents	
Concept	Algebraic Expressions	
Process TEKS	A.1B, A.1F	
Notes		

TEKS A.12A Supporting Standard

decide whether relations represented verbally, tabularly, graphically, and symbolically define a function

ITEM

38 Which table does NOT show y as a function of x?

F

X	1 10	1 8	<u>1</u> 5	1/4	1 2
У	9	11	9	14	7

G

X	14	15	16	17	18
У	100	80	110	100	90

н

X	-0.2	0.6	-1.3	1.0	-0.2
У	5.8	-3.7	4.4	-0.9	8.1

J

X	-24	21	24	-27	29
V	2.7	2.8	2.7	2.5	2.5

Item Analysis		
Verb Using or Including	Decide	
	Table	
Concept	Function	
Process TEKS	A.1B, A.1E, A.1F	

Notes

Algebra I

TEKS A.12B Supporting Standard

evaluate functions, expressed in function notation, given one or more elements in their domains

ITEM

47 If $p(x) = 5(x^2 + 1) + 16$, what is the value of p(11)?

- **A** 690
- **B** 736
- **C** 622
- **D** 626

:	Item Analysis	
Verb	Evaluate	
Using or Including	Domain	
Concept	Function Notation	
Process TEKS	A.1B, A.1F	
Notes		

Category 1 Algebra I

TEKS A.12C Supporting Standard

identify terms of arithmetic and geometric sequences when the sequences are given in function form using recursive processes

ITEM

22 A sequence can be generated by using $a_n = 4a_{(n-1)}$, where $a_1 = 6$ and n is a whole number greater than 1. What are the first four terms in the sequence?

F 6, 24, 96, 384

G 6, 10, 14, 18

H 6, 20, 100, 500

J 6, 20, 76, 300

Item Analysis		
Verb	Identify	
Using or Including	Recursive Process	
Concept	Algebraic Sequence	
Process TEKS	A.1B, A.1F	
Notes		

Item Analysis Verb **Using** or Including Concept **Process TEKS Notes**

Category 2 Algebra I

TEKS A.3A Supporting Standard

determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various forms, including y = mx + b, Ax + By = C, and $y - y_1 = m(x - x_1)$

ITEM

Item Analysis

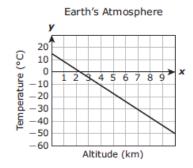
16 What is the slope of the line represented by 5x - 12y = 24?

F -2

G $\frac{24}{5}$

H -12

 $\frac{5}{12}$


Item Analysis		
Verb	Determine	
Using or Including	Ax + By = C	
Concept	Slope	
Process TEKS	A.1B, A.1F	
Notes		

TEKS A.3B Readiness Standard

calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems

ITEM

26 The graph models the linear relationship between the temperature of Earth's atmosphere and the altitude above sea level.

Which of these best represents the rate of change of the temperature with respect to altitude?

F -6.5°C/km

G -3.5°C/km

H -0.29°C/km

J -0.15°C/km

Item Analysis		
Verb	Calculate	
Using or Including	Graphically	
Concept	Rate of Change	
Process TEKS	A.1A, A.1B, A.1E, A.1F	
N. I		

Algebra I

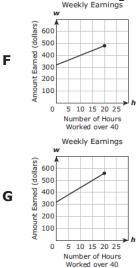
TEKS A.3B Readiness Standard

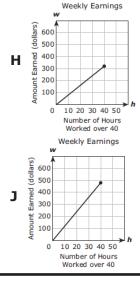
calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems

ITEM

- **52** The function y = 3.75 + 1.5(x 1) can be used to determine the cost in dollars for a taxi ride of x miles. What is the rate of change of the cost in dollars with respect to the number of miles?
 - **F** \$1.50 per mile
 - **G** \$3.75 per mile
 - **H** \$4.25 per mile
 - **J** \$5.25 per mile

	Item Analysis		
Verb	Calculate		
Using or Including	Algebraically		
Concept	Rate of Change		
Process TEKS	A.1A, A.1B, A.1E, A.1F		
Notes			


TEKS A.3C Readiness Standard


graph linear functions on the coordinate plane and identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems

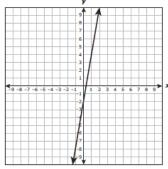
ITEM

12 A lifeguard earns \$320 per week for working 40 hours plus \$12 per hour worked over 40 hours. A lifeguard can work a maximum of 60 hours per week.

Which graph best represents the lifeguard's weekly earnings in dollars for working h hours over 40?

Item Analysis		
Verb	Graph	
Using or Including	Real-World Problems	
Concept	Linear Function Key Features	
Process TEKS	A.1A, A.1B, A.1E, A.1F	
	Notes	

Algebra I


EKS A.3C Readiness Standard

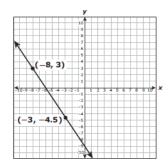
graph linear functions on the coordinate plane and identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems

ITEM

Item Analysis

32 The graph of a function is shown on the grid.

Which ordered pair best represents the location of the *y*-intercept?


- **F** $(\frac{1}{3}, 0)$
- G(0, -2)
- **H** $(0, \frac{1}{3})$
- (-2, 0)

Item Analysis		
Verb	Graph	
Using or Including	<i>y</i> -intercept	
Concept	Linear Functions Key Features	
Process TEKS	A.1B, A.1E, A.1F	
Notes		

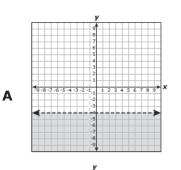
TEKS A.3C Readiness Standard

graph linear functions on the coordinate plane and identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems

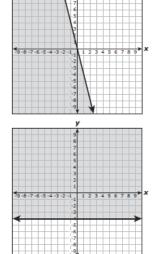
42 The graph of linear function *g* is shown on the grid.

What is the zero of *g*? Record your answer and fill in the bubbles on your answer document.

Item Analysis				
Verb	Graph			
Using or Including	Zero			
Concept	Linear Functions Key Features			
Process TEKS	A.1B, A.1E, A.1F			


Algebra I

TEKS A.3D Readiness Standard


graph the solution set of linear inequalities in two variables on the coordinate plane

ITEM

3 Which graph best represents the solution set of $y \le -4x$?

С

Verb Graph

Using or Including

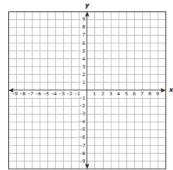
Concept Solution Set Linear Inequalities

Process TEKS

A.1B, A.1E, A.1F

Notes

В


D

TEKS A.3D Readiness Standard

graph the solution set of linear inequalities in two variables on the coordinate plane

ITEM

37 Which ordered pair is in the solution set of $y \ge \frac{1}{3}x + 4$?

Item Analysis

Verb

Using or Including

Coordinate Plane

Solution Set Linear Inequalities

Graph

Process TEKS A.1B, A.1E, A.1F

Item Analysis

Category 2 Algebra I

TEKS A.3E Supporting Standard

determine the effects on the graph of the parent function f(x) = x when f(x) is replaced by af(x), f(x) + d, f(x - c), f(bx) for specific values of a, b, c, and d

ITEM

- **45** A student graphed f(x) = x and g(x) = f(x) + 3 on the same coordinate grid. Which statement describes how the graphs of f and g are related?
 - **A** The graph of f is shifted 3 units up to create the graph of g.
 - **B** The graph of f is steeper than the graph of g.
 - **C** The graph of *f* is shifted 3 units down to create the graph of *q*.
 - **D** The graph of f is less steep than the graph of g.

Item Analysis			
Verb	Determine		
Using or Including	NA		
Concept	f(x) + d		
Process TEKS	A.1A, A.1B, A.1G		
	Notes		

TEKS A.3F Supporting Standard

graph systems of two linear equations in two variables on the coordinate plane and determine the solutions if they exist

ITEM

29 The line graphed on the grid represents the first of two equations in a system of linear equations.

If the graph of the second equation in the system passes through the points (-12, 20) and (4, 12), which statement is true?

- **A** The only solution to the system is (10, 5).
- **B** The only solution to the system is (0, 14).
- **C** The system has no solution.
- **D** The system has an infinite number of solutions.

Item Analysis		
Verb	Graph	
Using or Including	Coordinate Plane	
Concept	Two Linear Equations in Two Variables	
Process TEKS	A.1B, A.1E, A.1G	
	Notes	

Algebra I

TEKS A.4A Supporting Standard

calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity a s a measure of the strength of the linear association

ITEM

19 The table shows the heights and the lengths of several rectangles.

Height (in.)	41	70	21	34	10	92	54	24	10	35	42	66
Length (in.)	21	25	32	12	16	45	40	23	45	35	21	14

What does the correlation coefficient for the data indicate about the strength of the linear association between the height and the length of these rectangles?

- **A** Weak negative correlation
- **B** Strong negative correlation
- C Weak positive correlation
- **D** Strong positive correlation

Item Analysis			
Verb	Calculate		
Using or Including	NA		
Concept	Correlation Coefficient		
Process TEKS	A.1A, A.1B, A.1E, A.1G		
	Notes		

TEKS A.4B Supporting Standard compare and contrast association and causation in real-world problems

ITEM

- **9** Which situation best represents causation?
 - **A** When the number of bus stops increases, the number of car sales decreases.
 - **B** When fewer firefighters report to a house fire, the damage caused by the fire decreases.
 - C When ice cream sales increase, incidents of sunburn increase.
 - **D** When it rains several inches, the water level of a lake increases.

Item Analysis		
Verb	Compare and Constant	
Using or Including	Real-World Problems	
Concept	Causation	
Process TEKS	A.1A, A.1B, A.1G	
	Notes	

Algebra I

TEKS A.2A Readiness Standard

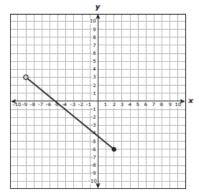
determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete; and represent domain and range using inequalities

ITEM

A set of weights includes a 4 lb barbell and 6 pairs of weight plates. Each pair of plates weighs 20 lb. If x pairs of plates are added to the barbell, the total weight of the barbell and plates in pounds can be represented by f(x) = 20x + 4.

What is the range of the function for this situation?

- **A** {0, 1, 2, 3, 4, 5, 6}
- **B** {4, 24, 44, 64, 84, 104, 124}
- **C** {0, 2, 4, 6}
- **D** {4, 44, 84, 124}


Item Analysis			
Verb	Determine		
Using or Including	Discrete		
Concept	Range		
Process TEKS	A.1A, A.1B, A.1F		
	Notes		

TEKS A.2A Readiness Standard

determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both continuous and discrete; and represent domain and range using inequalities

ITEM

44 The graph of part of linear function g is shown on the grid.

Which inequality best represents the domain of the part shown?

- **F** 9 < *x* ≤ 2
- **G** $9 \le x < 2$
- **H** $6 < g(x) \le 3$
- **J** $6 \le g(x) < 3$

Item Analysis				
Verb	Determine			
Using or Including	Inequalities			
Concept	Domain			
Process TEKS	A.1B, A.1E, A.1F			

Notes

© 2017 **GF**Educators

TEKS A.2B Supporting Standard

write linear equations in two variables in various forms, including y = mx + b, Ax + By = C, and $y - y_1 = m(x - x_1)$, given one point and the slope and given two points

ITEM

What is the equation in slope-intercept form of the line that passes through the points (-4, 47) and (2, -16)?

Α	<i>y</i> =	$-\frac{21}{2}x +$	979 21
	,	_	21

B
$$y = -\frac{2}{21}x + \frac{979}{21}$$

C
$$y = -\frac{21}{2}x + 5$$

D
$$y = -\frac{2}{21}x + 5$$

:	Item Analysis
Verb	Write
Using or Including	Two Points
Concept	Linear Equations in Two Variables
Process TEKS	A.1B, A.1D, A.1F
	Notes

Algebra I

TEKS A.2C Readiness Standard

write linear equations in two variables given a table of values, a graph, and a verbal description

ITEM

33 Researchers in Antarctica discovered a warm sea current under a glacier that is causing the glacier to melt. The ice shelf of the glacier had a thickness of approximately 450 m when it was first discovered. The thickness of the ice shelf is decreasing at an average rate of 0.06 m per day.

Which function can be used to find the thickness of the ice shelf in meters x days since the discovery?

A
$$t(x) = 450 - 0.06x$$

B
$$t(x) = -0.06(x + 450)$$

C
$$t(x) = 450 + 0.06x$$

D
$$t(x) = 0.06(x + 450)$$

Item Analysis				
Verb	Write			
Using or Including	Verbal Description			
Concept	Linear Equations in Two Variables			
Process TEKS	A.1A, A.1B, A.1D, A.1F			

Category 3 Algebra I

TEKS A.2C Readiness Standard

write linear equations in two variables given a table of values, a graph, and a verbal description

ITEM

50 The table represents some points on the graph of a linear function.

X	У
-20	-268
-14	-196
-8	-124
-1	-40

Which equation represents the same relationship?

F
$$y + 268 = \frac{1}{12}(x + 20)$$

G
$$y + 20 = \frac{1}{12}(x + 268)$$

H
$$y + 268 = 12(x + 20)$$

J
$$y + 20 = 12(x + 268)$$

Item Analysis		
Verb	Write	
Using or Including	Table of Values	
Concept	Linear Equations in Two Variables	
Process TEKS		
Notes		

TEKS A.2D Supporting Standard

write and solve equations involving direct variation

ITEM

The value of y is directly proportional to the value of x. If y = 35 when x = 140, what is the value of y when x = 70?

Record your answer and fill in the bubbles on your answer document.

Item Analysis	
Verb	Solve
Using or Including	NA
Concept	Direct Variation
Process TEKS	A.1B, A.1F
Notes	

Algebra I

TEKS A.2G Supporting Standard

write an equation of a line that is parallel or perpendicular to the x- or y-axis and determine whether the slope of the line is zero or undefined

ITEM

36 What is the equation of the line that passes through the point (-2, 7) and has a slope of zero?

F x = 7

G y = 2

H x = 2

J v = 7

Item Analysis	
Verb	Write
Using or Including	Slope Zero
Concept	Parallel to x-axis
Process TEKS	A.1B, A.1F
Notes	

TEKS A.2H Supporting Standard

write linear inequalities in two variables given a table of values, a graph, and a verbal description

ITEM

A student is ordering a flower arrangement. She can choose any combination of roses and carnations for her flower arrangement, and she does not want to spend more than \$30. If roses cost \$3 each and carnations cost \$2 each, which inequality represents all possible combinations of x roses and y carnations?

Α	3x +	2 <i>y</i>	<	30
	•	-,		

B
$$3x + 2y \le 30$$

C
$$2x + 3y > 30$$

D
$$2x + 3y \le 30$$

Item Analysis	
Verb	Write
Using or Including	Verbal Description
Concept	Linear Inequalities in Two Variables
Process TEKS	A.1A, A.1B, A.1F
·	

tegory 3 Algebra I

TEKS A.2I Readiness Standard

write systems of two linear equations given a table of values, a graph, and a verbal description

A drummer and a guitarist each wrote songs for their band. The guitarist wrote 8 fewer than twice the number of songs that the drummer wrote. They wrote a total of 46 songs.

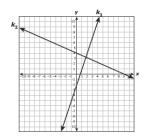
Which system of equations models this situation if the drummer wrote d songs and the guitarist wrote g songs?

F
$$g = 2d - 8$$
 $g + d = 46$

G
$$g = 8 - 2d$$
 $g = 46 - d$

H
$$d = 2g - 8$$
 $d = 46 - g$

J
$$d = 8 - 2g$$
 $d + g = 46$


Item Analysis	
Verb	Write
Using or Including	Verbal Description
Concept	System of Two Linear Equations
Process TEKS	A.1A, A.1B, A.1F
Notes	

TEKS A.2I Readiness Standard

write systems of two linear equations given a table of values, a graph, and a verbal description

ITEM

48 The graphs of lines k_1 and k_2 are shown on the grid.

Which system of equations is best represented by this graph?

F
$$3x - y = 2$$

$$4x + 9y = 36$$

G
$$3x - y = 6$$

$$4x + 9y = 4$$

H
$$x - 3y = 18$$
 $9x + 4y = 9$

J
$$x + y = 10$$

$$9x + 4y = 13$$

Item Analysis	
Verb	Write
Using or Including	Graph
Concept	System of Two Linear Equations
Process TEKS	A.1B, A.1E, A.1F

Notes

© 2017 **GF**Educators

Algebra I

TEKS A.5A Readiness Standard

solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides

ITEM

11 What is the solution to 8x - 3(2x - 4) = 3(x - 6)?

6 Α

2

C 30

No solution

Item Analysis	
Verb	Solve
Using or Including	Distributive Property
Concept	Linear Equations
Process TEKS	A.1B, A.1F
Notes	

TEKS A.5A Readiness Standard

solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides

ITEM

40 Which value of x makes the equation 0.75(x + 20) = 2 + 0.5(x - 2) true?

> F 64

G -64

Н 56

-56

Item Analysis	
Verb	Solve
Using or Including	Distributive Property
Concept	Linear Equations
Process TEKS	A.1B, A.1F
Notes	

Algebra I

TEKS A.5C Readiness Standard

solve systems of two linear equations with two variables for mathematical and real-world problems

ITEM

- **18** A bus travels two different routes: the Green Route and the Blue Route. The routes are different lengths.
 - On Monday the bus traveled the Green Route 6 times and the Blue Route 5 times, traveling a total of 52 miles.
 - On Tuesday the bus traveled the Green Route 12 times and the Blue Route 13 times, traveling a total of 119 miles.

What is the length of the Green Route in miles?

F 4.4 mi

G 4.5 mi

H 6.4 mi

J 6.8 mi

Item Analysis	
Verb	Solve
Using or Including	Real-World Problems
Concept	System of Two Linear Equations
Process TEKS	A.1A, A.1B, A.1F
Notes	

TEKS A.5C Readiness Standard

solve systems of two linear equations with two variables for mathematical and real-world problems

ITEM

54 What is the value of *x* in the solution to this system of equations?

$$y + 2x = -1$$
$$y = \frac{1}{2}x + 4$$

F $\frac{6}{5}$

G -2

H $-\frac{10}{3}$

J 3

Item Analysis	
Verb	Solve
Using or Including	Mathematical Problems
Concept	System of Two Linear Equations
Process TEKS	A.1B, A.1F

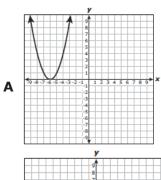
TEKS A.6A Readiness Standard

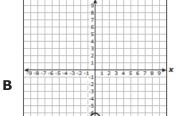
determine the domain and range of quadratic functions and represent the domain and range using inequalities

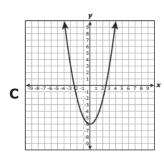
ITEM

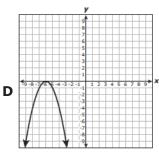
30 What is the domain of $f(x) = 9 - x^2$?

- **F** $f(x) \ge 9$
- **G** All real numbers
- **H** $-3 \le x \le 3$
- $\mathbf{J} \quad x \leq 9$


Item Analysis	
Verb	Determine
Using or Including	Inequalities
Concept	Domain
Process TEKS	A.1B, A.1F
Notes	


TEKS A.6A Readiness Standard


determine the domain and range of quadratic functions and represent the domain and range using inequalities


ITEM

Which graph best represents a function with a range of all real numbers greater than or equal to 6?

Item Analysis	
Verb	Determine
Using or Including	NA
Concept	Range
Process TEKS	A.1B, A.1E, A.1F

Algebra I

EKS A.6B Supporting Standard

write equations of quadratic functions given the vertex and another point on the graph, write the equation in vertex form $(f(x) = a(x - h)^2 + k)$, and rewrite the equation from vertex form to standard form $(f(x) = ax^2 + bx + c)$

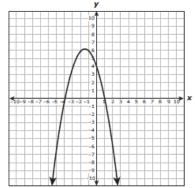
ITEM

43 Which quadratic function in vertex form can be represented by the graph that has a vertex at (3, -7) and passes through the point (1, -10)?

A
$$y = \frac{3}{4}(x+3)^2 + 7$$

B
$$y = -\frac{3}{4}(x+3)^2 - 7$$

C
$$y = \frac{3}{4}(x-3)^2 + 7$$


D
$$y = -\frac{3}{4}(x-3)^2 - 7$$

Item Analysis	
Verb	Write
Using or Including	Vertex and Point
Concept	Quadratic Function Vertex Form
Process TEKS	A.1B, A.1D, A.1F
Notes	

TEKS A.6C Supporting Standard write quadratic functions when given real solutions and graphs of their related equations

ITEM

10 The graph of a quadratic function is shown on the grid.

Which function is best represented by this graph?

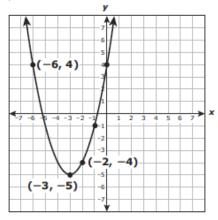
F
$$f(x) = x^2 + 3x - 4$$

G
$$f(x) = -x^2 - 3x + 4$$

H
$$f(x) = x^2 - 3x - 4$$

J
$$f(x) = -x^2 + 3x + 4$$

Item Analysis	
Verb	Write
Using or Including	Real Solutions and Graph
Concept	Quadratic Function
Process TEKS	A.1B, A.1D, A.1F


Algebra I

TEKS A.7A Readiness Standard

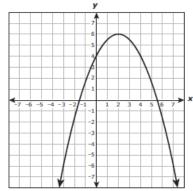
graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry

ITEM

14 The graph of quadratic function *f* is shown on the grid.

What is the *y*-intercept of the graph of *f*?

Record your answer and fill in the bubbles on your answer document.


Item Analysis	
Verb	Graph
Using or Including	<i>y</i> -intercept
Concept	Quadratic Function Key Features
Process TEKS	A.1B, A.1E, A.1F
Notes	

TEKS A.7A Readiness Standard

graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry

ITEM

46 The graph of a quadratic function is shown on the grid.

Which equation best represents the axis of symmetry?

F
$$y = 6$$

G
$$x = 2$$

H
$$y = 4$$

$$\mathbf{J} \quad x = 0$$

Item Analysis		
Verb	Graph	
Using or Including	Axis of Symmetry	
Concept	Quadratic Function Key Features	
Process TEKS	A.1B, A.1E, A.1F	

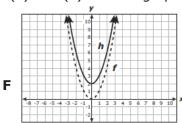
Algebra I

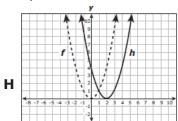
TEKS A.7C Readiness Standard

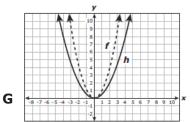
determine the effects on the graph of the parent function $f(x) = x^2$ when f(x) is replaced by af(x), f(x) + d, f(x - c), f(bx) for specific values of a, b, c, and d

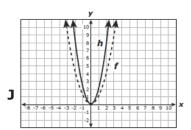
ITEM

- The graph of f(x) = x was transformed to create the graph of $g(x) = (x 7.5)^2$. Which of these describes this transformation?
 - **F** A horizontal shift to the right 7.5 units
 - **G** A horizontal shift to the left 7.5 units
 - **H** A vertical shift down 56.25 units
 - **J** A vertical shift up 56.25 units


Item Analysis	
Verb	Determine
Using or Including	f(x-c)
Concept	Effects of Graph
Process TEKS	A.1A, A.1B, A.1G
Notes	


TEKS A.7C Readiness Standard


determine the effects on the graph of the parent function $f(x) = x^2$ when f(x) is replaced by af(x), f(x) + d, f(x - c), f(bx) for specific values of a, b, c, and d


ITEM

24 The graph of $f(x) = x^2$ is transformed to create the graph of h(x) = 2f(x). Which graph best represents f and h?

Item Analysis	
Verb	Determine
Using or Including	af(x)
Concept	Effects of Graph
Process TEKS A.1B, A.1E, A.1F	
Notes	

Algebra I

TEKS A.8A Readiness Standard

solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula

ITEM

- The total number of seats in an auditorium is modeled by $f(x) = 2x^2 - 6x$, where x represents the number of rows of seats. How many rows are there in the auditorium if it has a total of 416 seats?
 - Α 32
 - 13
 - C 20
 - 16

Item Analysis	
Verb	Solve
Using or Including	Factoring
Concept	Quadratic Equations
Process TEKS	A.1A, A.1B, A.1F
Notes	

TEKS A.8A Readiness Standard

solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula

ITEM

34 What is the positive solution to the equation $0 = \frac{1}{3}x^2 - 3$?

Record your answer and fill in the bubbles on your answer document.

Item Analysis		
Verb	Solve	
Using or Including	Square Roots	
Concept	Quadratic Equations	
Process TEKS	A.1B, A.1F	
Notes		

Algebra I

TEKS A.8B Supporting Standard

write, using technology, quadratic functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems

ITEM

A projectile is launched into the air from the ground. The table shows the height of the projectile, h(t), at different times.

Projectile Height

Time (seconds)	Height (meters)
5	1,353
10	2,460
15	3,323
20	3,940
25	4,313
30	4,440
35	4,323

Based on the table, which function can best be used to model this situation?

A
$$h(t) = 99t^2 + 858$$

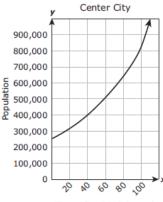
B
$$h(t) = 4.9t^2 + 295t + 0.6$$

C
$$h(t) = 4.9t^2 + 295t + 2$$

D
$$h(t) = 99t^2 + 1,470.3$$

Item Analysis	
Verb	Write
Using or Including	Fit Data
Concept	Quadratic Equations
Process TEKS	A.1A, A.1B, A.1E, A.1F
Notes	

Item Analysis					
Verb					
Using or Including					
Concept					
Process TEKS					
	Notes				



Algebra I

TEKS A.9A Supporting Standard

determine the domain and range of exponential functions of the form $f(x) = ab^x$ and represent the domain and range using inequalities

21 The population of Center City is modeled by exponential function *f*, where *x* is the number of years after the year 2015. The graph of *f* is shown on the grid.

Time After 2015 (years)

Item Analysis						
Verb	Determine					
Using or Including	Inequalities					
Concept	Range					
Process TEKS A.1A, A.1B, A.1E, A.1						
Notes						

Which inequality best represents the range of *f* in this situation?

- $\mathbf{A} \quad x \ge 0$
- **B** $y \ge 250,000$
- **C** $0 \le x \le 110$
- **D** $250,000 \le y \le 1,000,000$

TEKS A.9B Supporting Standard

interpret the meaning of the values of a and b in exponential functions of the form $f(x) = ab^x$ in real-world problems

- A student used $f(x) = 5.00(1.012)^x$ to show how the balance in a savings account will increase over time. What does the 5.00 represent?
 - **A** The interest the savings account earned for the first year
 - **B** The annual interest rate of the savings account
 - **C** The number of years the savings account has earned interest
 - **D** The starting balance of the savings account

Item Analysis					
Verb	Interpret				
Using or Including	Real-World Problems				
Concept	Exponential Functions Meaning of <i>a</i>				
Process TEKS	A.1A, A.1B, A.1G				

Algebra I

TEKS A.9C Readiness Standard

write exponential functions in the form $f(x) = ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay

A particular type of cell doubles in number every hour. Which function can be used to find the number of cells present at the end of h hours if there are initially 4 of these cells?

F $n = 4(\frac{1}{2})^h$

G $n = 4(2)^h$

H $n = 4 + (2)^h$

J $n = 4 + (\frac{1}{2})^h$

Item Analysis					
Verb	Write				
Using or Including	Growth Exponential Functions				
Concept					
Process TEKS	A.1A, A.1B, A.1F				
Notes					

TEKS A.9C Readiness Standard

write exponential functions in the form $f(x) = ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay

ITEM

35 The amount of fertilizer in a landscaping company's warehouse decreases at a rate of 3% per week. The amount of fertilizer in the warehouse was originally 78,000 cubic yards.

Which function models the amount of fertilizer in cubic yards left after w weeks?

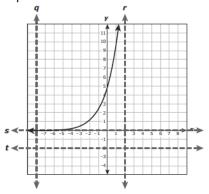
A $f(w) = 0.97(78,000)^w$

B $f(w) = 1.03(78,000)^w$

C $f(w) = 78,000(0.97)^w$

D $f(w) = 78,000(1.03)^w$

Verb Write Using or Decay	Item Analysis					
	Write					
Including						
Concept Exponential Function	ons					
Process TEKS A.1A, A.1B, A.1	F					


Algebra I

TEKS A.9D Readiness Standard

graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems

ITEM

8 The graph of an exponential function is shown on the grid.

Which dashed line is an asymptote for the graph?

- **F** Line q
- **G** Line *r*
- **H** Line s
- **J** Line t

Item Analysis					
Verb Graph					
Using or Asymptote					
Concept	Exponential Functions Key Features				
Process TEKS A.1B, A.1E, A.1F					
Notes					

TEKS A.9D Readiness Standard

graph exponential functions that model growth and decay and identify key features, including y-intercept and asymptote, in mathematical and real-world problems

ITEM

49 Which statement about the graph of $y = \frac{1}{3}(\frac{2}{3})^x$ is true?

- **A** The graph has a vertical asymptote.
- **B** The graph crosses the *y*-axis at $(0, \frac{2}{9})$.
- **C** The graph has an asymptote at $y = \frac{1}{3}$.
- **D** The graph decreases from left to right.

Item Analysis					
Verb Graph					
Using or Including	Key Features				
Concept	Exponential Functions				
Process TEKS A.1B, A.1G					
Notes					

Category 1 Number and Algebraic Methods 11 Total Questions

TEKS	}	Item	My Answer	Correct Answer	Process TEKS
A.10A	add and subtract polynomials of degree one and degree two	13		Α	
A.10B	multiply polynomials of degree one and degree two	NT			
A.10C	determine the quotient of a polynomial of degree one and polynomial of degree two when divided by a polynomial of degree one and polynomial of degree two when the degree of the divisor does not exceed the degree of the dividend	NT			
A.10D	rewrite polynomial expressions of degree one and degree two in equivalent forms using the distributive property	NT			
A.10E	factor, if possible, trinomials with real factors in the form $ax^2 + bx + c$, including	17		С	
	perfect square trinomials of degree two	28		F	
		41		Α	
A.10F	decide if a binomial can be written as the difference of two squares and, if possible, use the structure of a difference of two squares to rewrite the binomial	NT			
A.11A	simplify numerical radical expressions involving square roots	1		В	
A.11B	simplify numeric and algebraic expressions using the laws of exponents, including	6		H	
	integral and rational exponents	20		-14	
		51		В	
A.12A	decide whether relations represented verbally, tabularly, graphically, and symbolically define a function	38		н	
A.12B	evaluate functions, expressed in function notation, given one or more elements in their domains	47		D	
A.12C	identify terms of arithmetic and geometric sequences when the sequences are given in function form using recursive processes	22		F	
A.12D	write a formula for the nth term of arithmetic and geometric sequences, given the value of several of their terms	NT			
	solve mathematics and scientific formulas, and other literal equations, for a specified variable	NT			

Shaded - Readiness TEKS, NT - Not Tested Readiness TEKS - 5/11 questions

Describing and Graphing Linear Functions, Equations, and Inequalities
12 Total Questions

TEKS	Item	My Answer	Correct Answer	Process TEKS
A.3A determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various forms, including $y = mx + b$, $Ax + By = C$, and $y - y_1 = m(x - x_1)$	16		J	
A.3B calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical	26		F	
and real-world problems	52		F	
A.3C graph linear functions on the coordinate plane and identify key features, including	12		G	
x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems	32		G	
	42		-6	
A.3D graph the solution set of linear inequalities in two variables on the coordinate plane	3		С	
in two variables on the coordinate plane	37		В	
A.3E determine the effects on the graph of the parent function $f(x) = x$ when $f(x)$ is replaced by $af(x)$, $f(x) + d$, $f(x - c)$, $f(bx)$ for specific values of a , b , c , and d	45		A	
A.3F graph systems of two linear equations in two variables on the coordinate plane and determine the solutions if they exist	29		С	
A.3G estimate graphically the solutions to systems of two linear equations with two variables in real-world problems	NT			
A.3H graph the solution set of systems of two linear inequalities in two variables on the coordinate plane.	NT			
A.4A calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity a s a measure of the strength of the linear association	19		С	
A.4B compare and contrast association and causation in real-world problems	9		D	
A.4C write, with and without technology, linear functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems	NT			

Shaded - Readiness TEKS, NT - Not Tested Readiness TEKS - 7/12 questions

Category 3 Writing and Solving Linear Functions, Equations, and Inequalities 14 Total Questions

14 Total Questions					
TEKS	Item	My Answer	Correct Answer	Process TEKS	
A.2A determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range	5		В		
values for real-world situations, both continuous and discrete; and represent domain and range using inequalities	44		F		
A.2B write linear equations in two variables in various forms, including $y = mx + b$, $Ax + By = C$, and $y - y_1 = m(x - x_1)$, given one point and the slope and given two points	23		С		
A.2C write linear equations in two variables given a table of values, a graph, and a	33		A		
verbal description	50		Н		
A.2D write and solve equations involving direct variation	27		17.5		
A.2E write the equation of a line that contains a given point and is parallel to a given line	NT				
A.2F write the equation of a line that contains a given point and is perpendicular to a given line	NT				
A.2G write an equation of a line that is parallel or perpendicular to the x- or y-axis and determine whether the slope of the line is zero or undefined	36		J		
A.2H write linear inequalities in two variables given a table of values, a graph, and a verbal description	25		В		
A.21 write systems of two linear equations	2		F		
given a table of values, a graph, and a verbal description	48		F		
A.5A solve linear equations in one variable, including those for which the application of the distributive property is necessary	11		С		
and for which variables are included on both sides	40		J		
A.5B solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides	NT				
A.5C solve systems of two linear equations with two variables for mathematical and real-world problems	18 54		G G		
	91		<u> </u>		

Shaded - Readiness TEKS, NT - Not Tested Readiness TEKS - 10/14 questions

Category 4 Quadratic Functions and Equations 11 Total Questions

TEKS	Item	My Answer	Correct Answer	Process TEKS
A.6A determine the domain and range of quadratic functions and represent the	30		G	
domain and range using inequalities	53		С	
A.6B write equations of quadratic functions given the vertex and another point on the graph, write the equation in vertex form $(f(x) = a(x - h)^2 + k)$, and rewrite the equation from vertex form to standard form $(f(x) = ax^2 + bx + c)$	43		D	
A.6C write quadratic functions when given real solutions and graphs of their related equations	10		G	
A.7A graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept,	14		4	
zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry	46		G	
A.7B describe the relationship between the linear factors of quadratic expressions and the zeros of their associated quadratic functions	NT			
A.7C determine the effects on the graph of the parent function $f(x) = x^2$ when $f(x)$ is replaced by $af(x)$, $f(x) + d$, $f(x - c)$,	4		F	
f(bx) for specific values of a, b, c, and d	24		J	
A.8A solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula	7		D	
applying the quadratic formalia	34		3	
A.8B write, using technology, quadratic functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems	39		В	

Shaded - Readiness TEKS, NT - Not Tested Readiness TEKS - 8/11 questions

Category 5 Exponential Functions and Equations 6 Total Questions

TEKS	Item	My Answer	Correct Answer	Process TEKS
A.9A determine the domain and range of exponential functions of the form $f(x) = ab^x$ and represent the domain and range using inequalities	21		В	
A.9B interpret the meaning of the values of a and b in exponential functions of the form $f(x) = ab^x$ in real-world problems	31		D	
A.9C write exponential functions in the form $f(x) = ab^{x}$ (where b is a rational	15		В	
number) to describe problems arising from mathematical and real-world situations, including growth and decay	35		С	
A.9D graph exponential functions that model growth and decay and identify key	8		Н	
features, including y-intercept and asymptote, in mathematical and real-world problems	49		D	
A.9E write, using technology, exponential functions that provide a reasonable fit to data and make predictions for realworld problems.	NT			

Shaded - Readiness TEKS, NT - Not Tested Readiness TEKS - 4/6 questions